

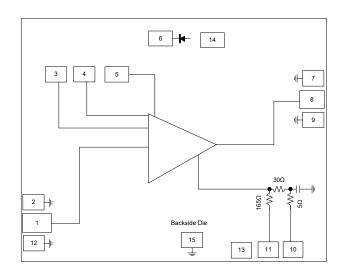
Wideband Distributed Amplifier 100 kHz - 67.5 GHz

Rev. V2

Features

- Gain: 14 dB @ 6 V, 30 GHz
- P1dB: 18 dBm @ 6 V, 30 GHz
- P3dB: 20 dBm @ 6 V, 30 GHz
- Integrated Power Detector
- Gain control with only positive bias voltages
- 50 Ω Input and Output Match
- Bias Voltage: VDD = 4 6 V
- Bias Current: IDSQ = 125 150 mA
- Die size: 2.1 mm x 1.05 mm
- RoHS* Compliant

Description


MAAM-011238-DIE is an easy-to-use, wideband amplifier that operates from 100 kHz to 67.5 GHz. The amplifier provides 14 dB gain, 4.5 dB noise figure and 20 dBm of P3dB output power @ 30 GHz. It is matched to 50 Ω with typical return loss better than 12 dB. The amplifier requires only positive bias voltages and would typically be operated at 6V and 135 mA.

MAAM-011238-DIE is suitable for a wide range of applications in instrumentation and communication systems.

Ordering Information

Part Number	Package
MAAM-011238-DIE	Die in Gel Pak

Functional Schematic¹

Pad Configuration²

Pin #	Pin Name	Description	
1	RF _{IN}	RF Input / Gate Voltage	
2, 7, 9, 11, 12,15	GND	DC & RF Ground to Backside Via	
3	$V_{G}2$	Gate Voltage 2	
4	V_{DD}	Drain Voltage	
5	V _{AUX}	Auxiliary Drain Voltage	
6	V_{DET}	Detector Voltage	
8	RF _{OUT}	RF Output / Drain Voltage	
10	V _G 1	Gate Voltage 1	
13,14	NC	Not Connected	

- 1. Image not to scale.
- The backside of the die must be connected to RF, DC and thermal ground.

^{*} Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

Wideband Distributed Amplifier 100 kHz - 67.5 GHz

Rev. V2

Electrical Specifications: $T_C = +25^{\circ}C$, $V_D = 6 V$, $Z_0 = 50 \Omega$

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Gain	0.0001 - 10 GHz 10 - 20 GHz 20 - 30 GHz 30 - 40 GHz 40 - 50 GHz 50 - 60 GHz 60 - 67.5 GHz	dB	14 13.8 13.3 12.5 11.5 —	15.9 15.5 15.0 14.0 13.0 11.5 7.0	
Noise Figure	2.8 - 10 GHz 10 - 20 GHz 20 - 30 GHz 30 - 40 GHz 40 - 50 GHz	dB	_	6.0 4.1 4.7 6.0 9.0	1
Input Return Loss	0.0001 - 10 GHz 10 - 20 GHz 20 - 30 GHz 30 - 40 GHz 40 - 67.5 GHz	dB	_	18.0 17.0 17.0 16.6 15.0	_
Output Return Loss	0.0001 - 10 GHz 10 - 20 GHz 20 - 30 GHz 30 - 40 GHz 40 - 67.5 GHz	dB	_	17.0 15.0 13.0 13.5 12.0	
P1dB	40 GHz	dBm	15	17.6	_
P3dB	0.0001 - 10 GHz 10 - 20 GHz 20 - 30 GHz 30 - 40 GHz 40 - 50 GHz 50 - 60 GHz 60 - 67.5 GHz	dBm	_	22.0 21.0 20.0 19.0 18.0 16.0 14.0	_
Output IP3	0.0001 - 10 GHz 10 - 20 GHz 20 - 30 GHz 30 - 40 GHz 40 - 50 GHz 50 - 60 GHz 60 - 67.5 GHz	dBm	_	29.0 28.0 27.0 26.5 25.0 22.0 16.0	_
Drain Current	Quiescent Bias	mA	_	135	_

Wideband Distributed Amplifier 100 kHz - 67.5 GHz

Rev. V2

Electrical Specifications: $T_C = +25^{\circ}C$, $V_D = 5$ V, $Z_0 = 50$ Ω

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Gain	0.0001 - 10 GHz 10 - 20 GHz 20 - 30 GHz 30 - 40 GHz 40 - 50 GHz 50 - 60 GHz 60 - 67.5 GHz	dB	_	16.5 16.0 16.0 16.0 16.0 15.0	_
Noise Figure	2.8 - 10 GHz 10 - 20 GHz 20 - 30 GHz 30 - 40 GHz 40 - 50 GHz	dB	_	6.0 4.1 4.7 6.0 9.0	_
Input Return Loss	0.0001 - 10 GHz 10 - 20 GHz 20 - 30 GHz 30 - 40 GHz 40 - 67.5 GHz	dB	_	18.0 17.0 17.0 16.6 15.0	_
Output Return Loss	0.0001 - 10 GHz 10 - 20 GHz 20 - 30 GHz 30 - 40 GHz 40 - 67.5 GHz	dB	_	17.0 15.0 13.0 13.5 12.0	_
P1dB	0.0001 - 10 GHz 10 - 20 GHz 20 - 30 GHz 30 - 40 GHz 40 - 50 GHz 50 - 60 GHz 60 - 67.5 GHz	dBm	_	18.0 17.6 17.0 17.5 15.5 15.0	_
P3dB	0.0001 - 10 GHz 10 - 20 GHz 20 - 30 GHz 30 - 40 GHz 40 - 50 GHz 50 - 60 GHz 60 - 67.5 GHz	dBm	_	21.5 21.0 19.5 18.5 17.5 17.0	_
Output IP3	0.0001 - 10 GHz 10 - 20 GHz 20 - 30 GHz 30 - 40 GHz 40 - 50 GHz 50 - 60 GHz 60 - 67.5 GHz	dBm	_	25.0 26.0 25.5 25.5 24.0 22.5 17.0	_
Drain Current	Quiescent bias	mA	_	150	_

Rev. V2

Operating Conditions

One of the recommended biasing conditions is V_{DD} = 6 V, I_{DSQ} = 135 mA. (controlled with V_{G1}). I_{DSQ} is set by adjusting V_{G1} after correctly setting V_{DD} . (Refer to turn on sequence.)

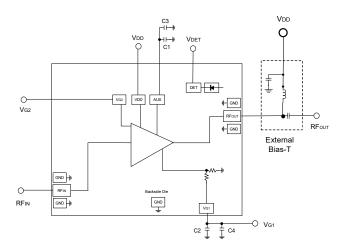
There are two possible bias methods:

- 1. The use of an external DC block on the input and a bias tee. The required V_{DD} is applied at RFOUT/VDD through the bias tee and V_{G} is set to provide the required current bias (I_{DSQ}) This provides wide band performance of 40 MHz 67.5 GHz. (depending on the bandwidth of the bias tee)
- The direct application of drain voltage to VDD using a wideband conical. No external bias tee is required. However DC blocking is required on both the RFIN and RFOUT. Using this method provides for an operational frequency of 40 MHz 67.5 GHz.

For low frequency extension, the addition of 2 bypass capacitors on VG1 and VAUX of 1200 pF and 10 μ F will improve the frequency of operation down to 100 kHz.. These capacitors should be positioned as close to the device as possible.

Dynamic gain control is available when operating in the linear gain region through the application of 0 to 1.6 V to VG2.

The evaluation board is configured with bias option 1. Bypass capacitors on VG1 and VAUX are also included for operation down to 100 kHz. Data in this datasheet was measured using option 1.


Operating the MAAM-011238-DIE Turn-on

- 1. Apply V_G1 to 0 V.
- 2. Apply V_{DD} to 6 V.
- 3. Set I_{DSQ} by adjusting V_G1 more positive. (typically 3 V for I_{DSQ} = 135 mA).
- 4. Apply RF_{IN} signal.

Turn-off

- 1. Remove RF_{IN} signal.
- 2. Decrease V_G1 to 0 V.
- 3. Decrease V_{DD} to 0 V.

Application Schematic

Component List

Part	Value	Size	Part Number
C1, C2	1200 pF	25 mil	TECDIA SKT03C122V12A6
C3, C4	10 μF	0603	any

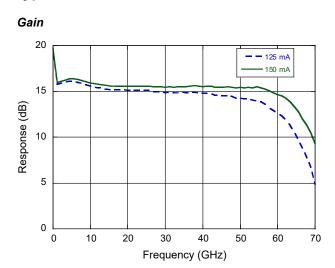
Absolute Maximum Ratings^{3,4}

Parameter	Absolute Maximum
Input Power	16 dBm
Drain Supply Voltage	8 V
Junction Temperature ^{5,6}	+150°C
Operating Temperature	-40°C to +85°C
Storage Temperature	-65°C to +150°C

- Exceeding any one or combination of these limits may cause permanent damage to this device.
- MACOM does not recommend sustained operation near these survivability limits.
- Operating at nominal conditions with T_J ≤ +150°C will ensure MTTF > 1 x 10⁶ hours.
- 6. Junction Temperature (T_J) = T_A + Θ_{JA} * ((V * I) (P_{OUT} P_{IN}))

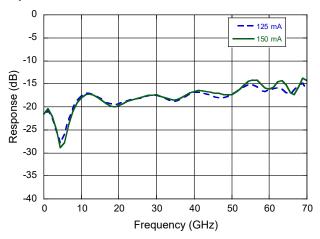
 Typical thermal resistance (Θ_{JA}) = 22.1 °C/W.

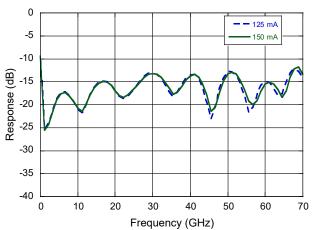
 For T_A = +85°C,


$$T_J = +103$$
 °C at V = 6 V, I = 0.135 A

4

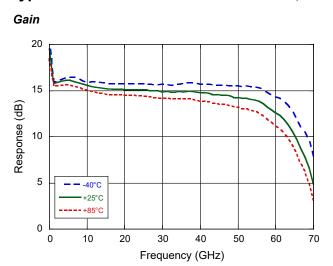
Rev. V2

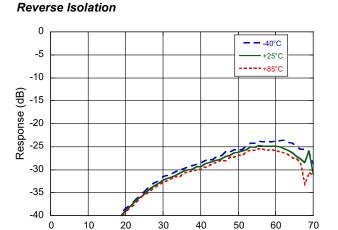

Typical Performance Curves: V_D = 6 V, T_A = +25°C


Reverse Isolation 0 -5 -10 -10 -15 -10 -20 -35 -30 -35 -40 0 10 20 30 40 50 60 70

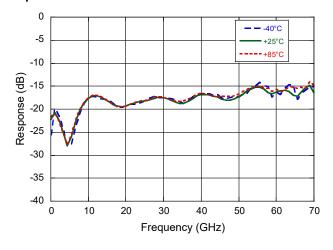
Frequency (GHz)

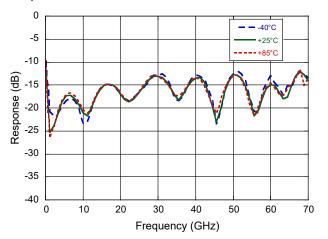
Input Return Loss


Output Return Loss



Rev. V2

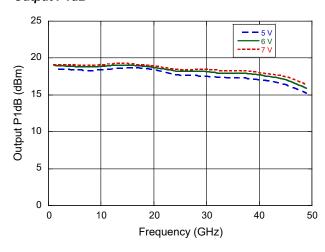

Typical Performance Curves: $V_D = 6 V$, $I_D = 125 mA$

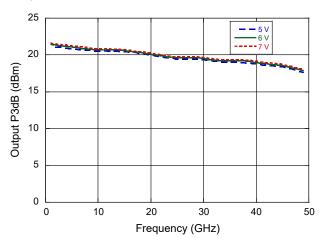


Frequency (GHz)

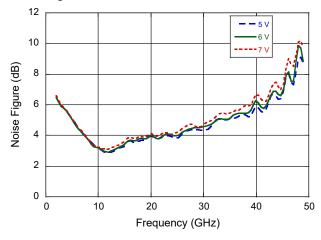
Input Return Loss

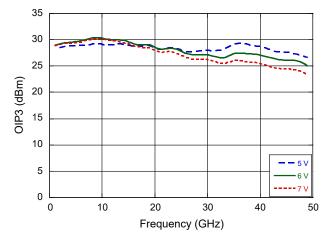
Output Return Loss



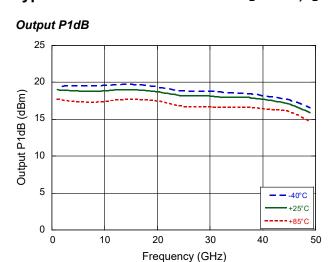

Rev. V2

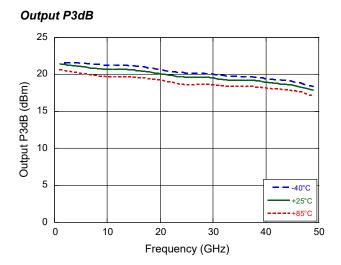
Typical Performance Curves: $V_D = 6 V$, $I_D = 135 mA$, $T_A = +25 °C$

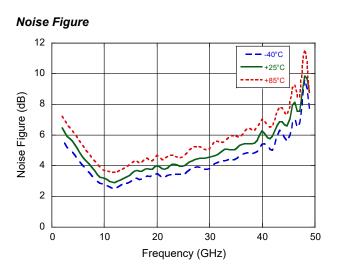

Output P1dB

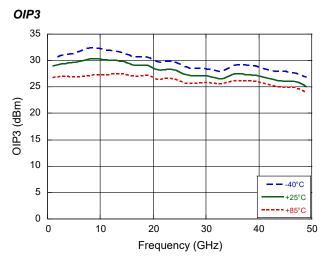

Output P3dB

Noise Figure at $T_A = 25^{\circ}C$

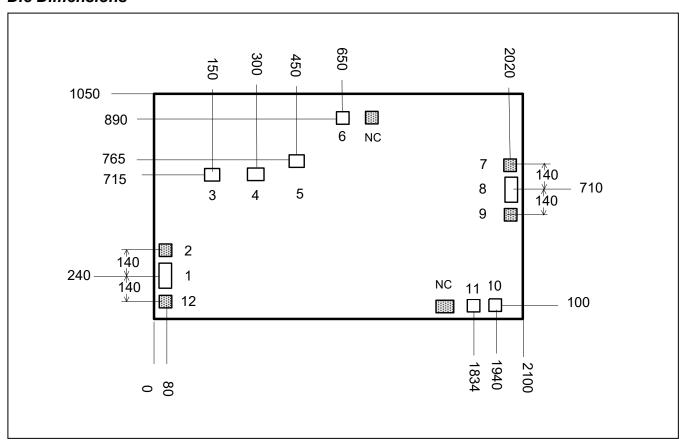

OIP3 at $T_A = 25^{\circ}C$






Rev. V2

Typical Performance Curves: $V_D = 6 V$, $I_D = 135 mA$



Rev. V2

Die Dimensions^{7,8}

Bond Pad Detail

Pin #	Size (x)	Size (y)
1	99	155
2, 6,10,11,12	69	69
3, 4, 5	69	89
7,9	89	69
8	69	168

All dimensions shown as microns (μm) with a tolerance of +/-5 μm, unless otherwise noted.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these HBM Class 1C devices.

^{8.} Die thickness is 100 μ m +/- 10 μ m.

Wideband Distributed Amplifier 100 kHz - 67.5 GHz

Rev. V2

MACOM Technology Solutions Inc. All rights reserved.

Information in this document is provided in connection with MACOM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.